الثلاثاء، 22 يونيو 2010

Células hematopoyéticas

En el sistema hematopoyético se reconocen diversos tipos celulares, que podemos agrupar en: células madre, células progenitoras y células maduras. El inicio del proceso de diferenciación hematopoyética se encuentra en el compartimento de células madre o células troncales hematopoyéticas (stem cells). Este grupo de células es el responsable de la generación continua y de por vida de todas las demás células hemáticas. Son las células con la máxima capacidad de autorrenovación y diferenciación, características que se van perdiendo conforme las células hematopoyéticas se diferencian en elementos más maduros. Las células madre hematopoyéticas son las únicas capaces de regenerar el sistema hematopoyético del receptor de un trasplante. Los estadios intermedios de desarrollo celular entre las células madre y las células hematopoyéticas maduras están constituidos por células que han sufrido restricciones en la capacidad de diferenciación, pero todavía no han adquirido los cambios morfológicos típicos de las células hemáticas maduras; son los progenitores comprometidos. Las células más maduras de los diferentes linajes mieloides (eritrocitos,polimorfonucleares, monocitos y megacariocitos) se reconocen fácilmente gracias a sus características morfológicas. Suponen el estadio final en el proceso de maduración hematopoyética y constituyen la mayoría de las células presentes en los sitios de hematopoyesis fisiológica, por lo que son las células monitorizadas en los diferentes procesos fisiopatológicos de la práctica médica. Son, además, las células diana de los diferentes mecanismos de control que afinan los cambios en su viabilidad, expansión y diferenciación, así como de la liberación final de las células maduras a la circulación sanguínea. Tanto las células madre como los progenitores y las células maduras se encuentran en la MO, en la SP y también en la sangre del cordón umbilical del recién nacido.

El proceso de diferenciación hematopoyética se describe como una jerarquía de células progenitoras, en la que cada estadio sucesivo se distingue del siguiente por un fenotipo característico, así como por el número y tipo(s) de células hijas maduras que son capaces de generar. Esta organización no se puede visualizar in vivo directamente, en parte por la movilidad de los progenitores dentro de la MO y en parte porque muchos cambios tempranos e irreversibles en la expresión génica suceden antes de que se expresen como cambios en la morfología celular. Por este motivo, todas las células he El proceso de diferenciación hematopoyética se describe como una jerarquía de células progenitoras, en la que cada estadio sucesivo se distingue del siguiente por un fenotipo característico, así como por el número y tipo(s) de células hijas maduras que son capaces de generar. Esta organización no se puede visualizar in vivo directamente, en parte por la movilidad de los progenitores dentro de la MO y en parte porque muchos cambios tempranos e irreversibles en la expresión génica suceden antes de que se expresen como cambios en la morfología celular. Por este motivo, todas las células hematopoyéticas inmaduras se clasifican morfológicamente de manera indiscriminada como células blásticas: células de tamaño pequeño, redondas, con núcleo grande y citoplasma escaso. Las relaciones entre progenitores y su progenie, que definen el inicio de la diferenciación irreversible de dichos progenitores hacia un linaje hematopoyético concreto, no pueden ser estudiadas por criterios morfológicos sino por otro tipo de análisis, fundamentalmente por marcadores de la membrana plasmática (inmunofenotipo) y por ensayos funcionales (cultivos in vitro, modelos animales):

• Inmunofenotipo: los elementos celulares diferentes del sistema hematopoyético presentan un perfil de expresión de marcadores de superficie que permite distinguirlos unos de otros mediante citometría de flujo. Además, basándose en dichas moléculas de superficie se pueden purificar poblaciones de progenitores hematopoyéticos para su uso en trasplantes hematopoyéticos o para ensayos funcionales. Existen muchas moléculas que determinan el inmunofenotipo de los progenitores, algunos de los cuales están recogidos en la figura 3. Así, las células madre hematopoyéticas del ratón se definen como células que expresan la molécula Sca1, altos niveles del receptor c-kit, bajos niveles del antígeno Thy y no expresan antígenos de los diferentes linajes maduros. Son células Sca1+c-kithiThyloLin-. La expresión del receptor de interleuquina 7 (IL7R) y del receptor de trombopoyetina (TpoR) ayudan a identificar progenitores que exclusivamente generan células mieloides o células linfoides. De la misma manera, la expresión o no de otras moléculas distingue a progenitores diferentes durante la maduración y diferenciación hematopoyéticas (Fig. 3). También, existen marcadores asociados clásicamente a células hemáticas maduras: CD41 en plaquetas, glicoforina en eritrocitos, CD15 en granulocitos, CD14 en monocitos, CD19 en linfocitos B, CD3 en linfocitos T o CD56 en células NK.

• Ensayos funcionales: estudian las dos características principales que distinguen a los diversos tipos de progenitores hematopoyéticos: el potencial proliferativo (número total de células hijas) y los linajes hematopoyéticos diferentes (tipos distintos de células hijas) que puede generar un determinado tipo de progenitor. Más adelante, detallaremos los ensayos más utilizados, tanto in vitro como in vivo. Un tipo especial de ensayo in vivo que no explicaremos aquí es la generación de animales que bien sobreexpresan (animales transgénicos) o bien no expresan (animales knockout) un determinado ácido ribonucléico mensajero (ARN-m) y, por tanto, su proteína correspondiente. Estos animales sirven para estudiar la significación fisiológica de moléculas implicadas en la hematopoyesis. El desarrollo de las células linfoides es diferente al de las células mieloides en muchos aspectos. Por ejemplo, los cambios morfológicos no son tan pronunciados, al menos hasta el momento en el que alcanzan la capacidad de responder a estímulos antigénicos. Además, los primeros estadios de diferenciación linfoide se acompañan de producción y destrucción de una enorme cantidad de células. Hasta la fecha, no se han conseguido desarrollar condiciones de cultivo in vitro para progenitores linfoides, lo que ha impedido realizar estudios comparables a los desarrollados para los progenitores mieloides.

La hematopoyesis durante el desarrollo embrionario

La localización anatómica del sistema hematopoyético cambia a lo largo del desarrollo embrionario y postnatal. Hoy día se piensa que este proceso se inicia durante la embriogénesis, a partir de células mesodérmicas capaces de generar tanto hematopoyesis como células endoteliales: hemangioblastos. La primera localización es extraembrionaria, en los islotes hemáticos del saco vitelino. La hematopoyesis en este momento se caracteriza por restringirse a la producción de células eritroides nucleadas, con hemoglobina embrionaria. Posteriormente, la hematopoyesis tendrá una localización definitiva intraembrionaria, primero en la esplacnopleura paraaórtica y luego en la región denominada AGM (Aortic-Gonadal- Mesonephros). Después de desarrollarse la circulación sanguínea, es el hígado fetal el principal órgano hematopoyético, para trasladarse definitivamente a la médula ósea (MO) y tejidos linfáticos periféricos.

ANATOMÍA CELULAR DE LA HEMATOPOYESIS

l sistema hematopoyético está compuesto por diferentes tipo celulares: células madre, progenitores y células maduras. Su localización anatómica cambia a lo largo del desarrollo embrionario.

El sistema hematopoyético está compuesto por diferentes tipo celulares organizados jerárquicamente. Mientras su desarrollo y maduración sucede en localizaciones anatómicas concretas, los elementos maduros y, en menor medida, los inmaduros circulan juntos por la SP.

Hematopoyesis

El sistema hematopoyético está compuesto por diferentes tipos celulares que derivan de la diferenciación y expansión de progenitores inmaduros. Su funcionamiento correcto asegura la producción de las células responsables del transporte de oxígeno, la coagulación sanguínea y la inmunidad. Se organiza como una jerarquía en la que las relaciones entre los diferentes tipos celulares se basan en la capacidad de proliferación y de diferenciación celular. El funcionamiento normal de la hematopoyesis resulta de la interacción entre mecanismos intracelulares y la influencia del microambiente donde se desarrollan las células hematopoyéticas.

Diariamente miles de millones de células hemáticas maduras, principalmente eritrocitos y granulocitos, mueren y son eliminadas de la circulación. Un número equivalente de células jóvenes alcanza la sangre periférica (SP), de manera que se compensa la pérdida ya señalada. La hematopoyesis hace referencia a este proceso continuo de producción de células hemáticas. En este artículo, vamos a comenzar describiendo las células que componen el sistema hematopoyético, seguidamente describiremos la organización de dicho sistema y, por último, hablaremos del funcionamiento normal de la hematopoyesis.